HLT 306 Topic 5 Discussion Question Two

HLT 306 Topic 5 Discussion Question One
May 24, 2022
HLT 307 Inter-professional Collaboration
May 24, 2022

HLT 306 Topic 5 Discussion Question Two

HLT 306 Topic 5 Discussion Question Two

HLT 306 Topic 5 Discussion Question Two

What are the percentages of people using CAM with prayer and those who do not?

Early commercial applications of CAM were in large companies in the automotive and aerospace industries; for example, Pierre Béziers work developing the CAD/CAM application UNISURF in the 1960s for car body design and tooling at Renault.[11] Alexander Hammer at DeLaval Steam Turbine Company invented a technique to progressively drill turbine blades out of a solid metal block of metal with the drill controlled by a punch card reader in 1950.

Historically, CAM software was seen to have several shortcomings that necessitated an overly high level of involvement by skilled CNC machinists. Fallows created the first CAD software but this had severe shortcomings and was promptly taken back into the developing stage.[citation needed] CAM software would output code for the least capable machine, as each machine tool control added

HLT 306 Topic 5 Discussion Question Two
HLT 306 Topic 5 Discussion Question Two

on to the standard G-code set for increased flexibility. In some cases, such as improperly set up CAM software or specific tools, the CNC machine required manual editing before the program will run properly. None of these issues were so insurmountable that a thoughtful engineer or skilled machine operator could not overcome for prototyping or small production runs; G-Code is a simple language. In high production or high precision shops, a different set of problems were encountered where an experienced CNC machinist must both hand-code programs and run CAM software.

Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS: HLT 306 Topic 5 Discussion Question Two

The integration of CAD with other components of CAD/CAM/CAE Product lifecycle management (PLM) environment requires an effective CAD data exchange. Usually it had been necessary to force the CAD operator to export the data in one of the common data formats, such as IGES or STL or Parasolid formats that are supported by a wide variety of software. The output from the CAM software is usually a simple text file of G-code/M-codes, sometimes many thousands of commands long, that is then transferred to a machine tool using a direct numerical control (DNC) program or in modern Controllers using a common USB Storage Device.

CAM packages could not, and still cannot, reason as a machinist can. They could not optimize toolpaths to the extent required of mass production. Users would select the type of tool, machining process and paths to be used. While an engineer may have a working knowledge of G-code programming, small optimization and wear issues compound over time. Mass-produced items that require machining are often initially created through casting or some other non-machine method. This enables hand-written, short, and highly optimized G-code that could not be produced in a CAM package.

At least in the United States, there is a shortage of young, skilled machinists entering the workforce able to perform at the extremes of manufacturing; high precision and mass production.[12][13] As CAM software and machines become more complicated, the skills required of a machinist or machine operator advance to approach that of a computer programmer and engineer rather than eliminating the CNC machinist from the workforce.