Facts about fluoride and Aluminium Fluoride and Dental Caries

Dental Caries Among Adults With Low Socioeconomic Status
August 23, 2022
The Healthcare Policy in the United States
August 23, 2022

Facts about fluoride and Aluminium Fluoride and Dental Caries

From researches, it has been noted that fluoride and aluminium will have some adverse impacts on the enzymatic activities in the human body. From the very initial studies, it was found out that fluoride has the capability of improving the strength of bones. Also, with dental fluorosis, there was the indication that fluoride tends to decrease severity in pain when the teeth have been damaged. This seemed to result in increased rates of healing in such fractures and fragmentations when children had been exposed to fluoride containing water. This study gave the implications that the use of fluoride might have some advanced importance in the control and prevention of caries in human beings (Chasteen, 1999).

Today, the increased cases of dental fluorosis have been due to the excessive consumption and ingestion of some fluoride compounds. These have been contributed to by the excessive formulations that have been intended for some topical forms or actions. According to a number of pharmacologists, the intensity or magnitude with which the metabolic effects on the fluoride materials would be dependent on a number of factors like the blood concentration and the excretory time. Once this has been ingested, there were speculations that it would as well impact on the salivary activities in the mouth. From some of the reports it was possible to point out that the action of fluoride on the salivary glands would be caused by the adenyl cyclase action. Since then, studies were all aimed at studying imperative effects of the sub-toxic dosages of fluoride on the human’s mandibular salivary glands (Young & Shannon, 2006).

It is true that all the processes that take place in the body are a result of enzymatic activities. The work of enzymes is what gives great contributions to the manner in which processes and food materials are broken down in the body so as to promote overall body growth and any other important body functioning. In the mouth, it is also true that there is a very high rate of digestion in which sugar and starch are broken down due to the presence of salivary amylase. This is the major enzyme found in the mouth which is responsible for the actions and processes taking place. During this action, it becomes easy for foodstuffs to be digested hence forming plaque that ends up in tooth cavities. Basically, what happens is that the present bacteria bodies, the acids, and the debris of foods and saliva, which contains the activator enzyme salivary amylase, come together, they end up forming a sticky substance referred to as plaque which will stick or adhere to the human teeth. This is the eventual cause of dental cavities which can be quite damaging (Lippman & Kaim1989).

However, fluoride and aluminium fluoride have the power in which they impact the action of amylase’s activities in the mouth. This is the single fact which forced dental scientists to come up with studies in understanding these effects of fluoride and how they could be applied in the prevention and control of dental cavities. These metallic compounds are known to contain numerous ionomeric substances and materials that have over the past years been seen to have both antimicrobial and anticariogenic properties on human processes, and especially when subjected to a field with some form of enzymes. These ionomeric compounds have the power and ability of creating and releasing fluoride ions after some period of time. This will as well impact the nature through which the binding of the compounds results in the formation of plaque in the mouth. However, since most of the antibacterial activities caused by these materials may have not yet been conclusively studied, there is the need for more research to be done on this. As well, there are some other useful compounds that will be released from these ionomeric compounds. For instance, aluminium fluoride, which has been shown to be a major substance that can have useful implications in effecting the amylase enzymatic activities, has been one of the compounds that will be released.

From the previous studies that have been done; the results have indicated that the antibacterial activities posed by salt solutions of aluminium against all cariogenic bacterial-organisms will be effective in reducing their action, and in the very end destabilizing it. For instance, the essential acid uric action and property of the species Streptococcus mutans which cause caries will entirely be dependent on ATP-ase activities. Therefore, any form of inhibitory induced by the effects of the fluoride on salivary amylase which has a grand role in the formation of plaque will be disoriented hence reducing the chances and abilities of the bacteria in the formation of plaque which in the long run results to tooth decay. Thus, we shall agree here that, the purposeful application and utilization of fluoride and aluminium fluoride will effectively interfere with the salivary amylase activities in the nature in which it facilitates decay of food substances and sugar in the mouth hence increasing chances of plaque formation (Young & Shannon, 2006). This will as well result in the overall interference of the bacterial activities and growth, and even the metabolism activities taking place in the mouth.

Therefore, this systematic and simultaneous production of aluminium and fluoride made available in the mouth will definitely manipulate a number of actions in the mouth. At times, there is the provision of compounds and chemicals that would improve the body’s production of fluoride and aluminium fluoride in the mouth so as to increase the performance in the fighting of teeth caries. The production of these metallic compounds or elements in the mouth would hence have great importance in the prevention of dental caries which have been a big problem in both the developed as well as the developing countries today. This possibility provided by the anticariogenic abilities and properties of the compounds has been noted to be effective in the restoration and improvement of bonding of the dental materials. This is the major understanding that has been adopted in ensuring that man can today fight dental cavities through the use of fluoride and aluminium fluoride compounds.